
Page 1

© BAE SYSTEMS 2004. All rights reserved.

OLSR Simulation, Implementation and Ad Hoc Sensor Network Application

Christopher Dearlove (chris.dearlove@baesystems.com) BAE SYSTEMS Advanced Technology Centre, UK.

Abstract
A summary is given of the key decisions in the creation
of a complete implementation of OLSR (RFC 3626).
This implementation is suitable for simulation, in
particular in OPNET, and for real time use, in
particular under Linux. An example simulation result,
illustrating a proprietary extension to the protocol is
given, and also a description of the demonstration of
an ad hoc sensor network. Finally additional
requirements for certain ad hoc networks are included.

1. Introduction
Optimised Link State Routing (OLSR) is a routing
protocol for a mobile ad hoc network (MANET).
OLSR is defined by the experimental standard RFC
3626 [1]. This paper describes an implementation of
OLSR and its use both for simulation and as a real
time implementation of the routing protocol, for which
it is used in an ad hoc sensor network demonstration.

2. History
Prior to RFC 3626, OLSR was defined by a sequence
of Internet Drafts published by the Manet group of the
Internet Engineering Task Force (IETF). The software
described here started as an implementation of version
5 of OLSR at a time when no public implementation of
this version of OLSR was available. This
implementation was later updated to version 7 and
then version 11 (equivalent to RFC 3626) of OLSR.
Some observations based on creating and using this
implementation were fed back to the OLSR authors.

3. Software Requirements
This implementation of OLSR started with the
following requirements

• A definition of a framework for a generic ad hoc
routing protocol (AHRP).

• An implementation of OLSR within this
framework.

• The ability to simulate any such AHRP, in
particular using the simulation tool OPNET [2].

• The ability to implement any such AHRP in real
time, in particular using an IEEE 802.11b equipped
laptop (or, later, PDA) using Linux.

• To include IPv4 and IPv6 options.

• To be able to interwork with other implementations
of OLSR.

The selected framework for a generic AHRP assumed
a protocol running over UDP. The framework was to
include reactive protocols such as AODV [3] and other
proactive protocols such as TBRPF [4]. It did not
allow for protocols such as DSR [5] which modify the
IP layer. Currently only OLSR has been implemented
using this framework.

The real time operation referred to is “soft” real time.
The code was written with reasonable regard for
efficiency, but no detailed optimisations, and
observed, for networks thus far implemented, to be
more than fast enough.
Later these requirements were augmented with the
following additions

• To include some compliant proprietary extensions
to OLSR.

• To support modified and extended versions of
OLSR.

• To include dynamic variation of OLSR parameters.

The first of these additional requirements is discussed
further below. The second of these additional
requirements includes modifications to OLSR such as
overriding the usual MPR selection algorithm, or
extensions such as Secure OLSR [6].

4. Software Design
Given the requirement for a generic framework, and
that OPNET directly supports only C and C++ code,
the obvious design of the software was in C++, with
the AHRP framework being represented by an abstract
base class Ahrp and OLSR implemented as a class
Olsr. Class relationships are shown in Figure 1
below; the two greyed out classes are hypothetical.

Ahrp

packet_received()
routing_failure()
link_layer_notification()
timeout()

Secure_Olsr

Aodv Olsr

packet_received()
routing_failure()
link_layer_notification()
timeout()

«creation»

«registration» Ahrp_Factory 1

register_creation()
create()

Wrapper

«creation»

Figure 1: AHRP and OLSR Classes and Creation

The interface shown above for classes Ahrp and
Olsr includes the most important class member
functions, but is incomplete: it excludes parameter
variation as well as features such as dynamic addition
and removal of gateways. The interface includes a
function, routing failure(), required by a
reactive protocol (to initiate route finding) whose
implementation in a proactive protocol is trivial. The
interface by which a modified version of OLSR may
be created is also not shown or discussed here.

Figure 1 also includes a “wrapper” object. This is the
code specific to the platform on which the OLSR, or
other routing protocol, is to be used. For OPNET this
is a process model, for Linux this is code running in
user space. The wrapper object is completely
independent of the selected routing protocol; this is

Page 2

© BAE SYSTEMS 2004. All rights reserved.

accomplished using usual runtime polymorphism as
shown in Figure 2 below. For routing protocol creation
this uses an object factory, of the particular style
described in [7] shown in Figure 1.

The wrapper includes, in particular, writing to the IP
routing table and handling outgoing packets (passing
them to UDP). As shown in Figure 2 below for Linux
(OPNET is similar) these are managed by “auxiliary”
classes which are specific to the wrapper, but with
abstract base classes used by the routing protocol.

Routing_Table

add()
replace()
remove()

Linux_Routing_Table

add()
replace()
remove()

Packet_Handler

allocate()
send()

Linux_Packet_Handler

allocate()
send()

Ahrp

Olsr

1

1

Linux_Wrapper
1

1

1 1111

1

1

Figure 2: AHRP and OLSR Class Usage

Provision for IPv4 and IPv6 is, unlike all other
options, handled by a compilation switch.

5. OLSR Compliance
The OLSR software has been designed to be fully
compliant with RFC 3626, although at the time of
writing this has not been verified. It includes all the
options included in RFC 3626, in particular

• It supports multiple interfaces.

• It supports external gateways (host and network
associations). It includes an option for dynamically
adding and removing these (constrained by
limitations of OLSR with regard to the latter).

• It includes link quality, defined either by link layer
notification or by tracking received and lost packets
and HELLO messages.

• All parameters, not just willingness, are fully
dynamically variable.

• It supports IPv4 and IPv6 by separate compilation.

The software does however currently have the
following limitations

• It does not piggyback outgoing messages into a
single packet. However it does properly process
incoming packets containing piggybacked
messages.

• There is no message or packet size control and
messages are not fragmented (although, with
differing values of the OLSR parameters
HELLO_INTERVAL and REFRESH_INTERVAL,
HELLO messages may be incomplete). This does
avoid certain problems that can arise with
fragmented TC messages. However it does properly
process incoming fragmented messages.

6. OLSR Extensions
In addition to extending the OLSR definition in areas
noted above (dynamic gateways and parameters) the
software implements the following optional
proprietary, but compliant, extensions to OLSR. (In

the latter two cases the extension may not strictly be
compliant, but should seamlessly interwork with fully
compliant implementations.)

• Optional minimum message intervals discussed
further below.

• Options to allow reuse of the existing MPR Set if
possible, despite possible recalculation (including
options to reuse even if a strictly better set can be
found).

• Link layer notification options to mix link layer
notification and message tracking. (This is, in
particular, to allow link quality to decline when link
layer notifications cease due to a link breaking.)

• Accelerated protocol set updates (of Interface
Association Set by HELLO messages and of Two
Hop Neighbour Set by MID messages).

7. Simulation
This paper does not include extensive simulation
results; some simulation results produced using this
and other software are reported in [8]. As an example
thereof, and to illustrate the minimum interval option
noted above, a single result is included here. The
simulation is of a number of identical nodes (10, 30 or
50) in a fixed size square world moving using a
random walk with reflection. For details see [8].

The minimum intervals used provide a minimum
separation between messages of the same type. Thus
for example if a neighbourhood change is observed
such that a new HELLO message should be sent and if
the last such message was sent less than the HELLO
message minimum interval ago, then sending is
postponed until the minimum interval after the
previous message (modified by jitter as appropriate).
Thus a minimum interval of zero causes messages to
be sent whenever a significant change is observed,
whereas a minimum interval equal to the usual
message interval means that only regularly scheduled
messages are sent. A minimum interval between these
values provides a soft transition between these two
behaviours.

Separate minimum intervals are supported for each
message type, but the results in Figure 3 below scale
all minimum intervals together. The results for
minimum intervals show an insignificant reduction in
performance (proportion of data packets received) but
a great reduction in overhead in this particular, high
mobility, case.

Minimum intervals as proportion of normal message interval
(link layer notification, medium power, high mobility)

0%

20%

40%

60%

80%

100%

10 30 50 10 30 50

number of nodes number of nodes

p
ro

p
o

rt
io

n
 o

f
d

at
a

re
ce

iv
ed

0

10

20

30

40

50

m
ea

n
 o

ve
rh

ea
d

 (
kb

yt
e/

s)

zero (fully reactive) quarter interval half interval

zero (fully reactive) quarter interval half interval

Delivery performance Receive overhead per node

Figure 3: Simulation Results (Minimum Intervals)

Page 3

© BAE SYSTEMS 2004. All rights reserved.

It may be noted that these results show poor
performance for the 10 node network. This is due to
the fixed size of the world and hence reduced node
density for fewer nodes. Results in [8] show how this
is exacerbated by use of link layer notification, as here,
which improves performance with more nodes (greater
density) but may cause network fragmentation with
fewer nodes (lower density). Some form of dynamic
control over use of link layer notification might be the
solution to this problem.

8. Sensor Network Applications
A particular case of interest is an ad hoc network of
nodes, some or all of which contain sensors. These
may just be stationary ground sensor networks, or
could include mobile nodes, up to and including
unmanned aerial vehicles (UAVs). Even while the
network is stationary, there is still a place for a mobile
ad hoc network protocol

• The network is likely to be unplanned, and
deployed in an ad hoc manner, possibly for example
being scattered from the air. This requires ad hoc
configuration of the network.

• The network may be subject to loss, possibly due to
battery exhaustion or damage (accidental or
deliberate).

• Radio transmission conditions may necessitate a
change in network topology. This may be
deliberate, due to jamming, or accidental (as
illustrated below).

The latter two points may be summarised that although
a network is stationary, it may not be static. However
the stationary nature of the network, but need for
possible rapid reconfiguration, may be recognised in
setting protocol parameters appropriate to the scenario.

This OLSR implementation has been used as part of a
demonstration of a First Generation Unattended
Ground Sensor Network by BAE SYSTEMS Avionics
Group, Sensor Systems Division and BAE SYSTEMS
Advanced Technology Centre. This concept
demonstrator was based on earlier mobile network
demonstrations using laptops and PDAs (Compaq
iPAQs). Figure 4 below shows a demonstration ground
sensor node, which contains a low power ARM
processor with WLAN, an acoustic interface, a seismic
sensor (geo-phone) and a GPS receiver to provide
synchronisation and geo-location. Figure 5 below
illustrates a camera node that can be connected to a
variety of different imager types and controlled via the
network; for example the imager can be cued via either
the acoustic or seismic sensor nodes.

Figure 4: Sensor Node Figure 5: Camera Node

The demonstration system architecture also includes a
communication gateway that can support requirements
for long-haul communication, thus providing
connectivity to existing legacy infrastructure. The
demonstration network equipment, which has been
integrated with an existing in-service sound ranging
system as well as operated in a standalone mode, is
shown in Figure 6 below.

Figure 6: Network Before Deployment

This network has been demonstrated in trials in both
open terrain and urban environments, and shown to
provide useful track data for typical battlefield vehicle
targets for a number of different deployment scenarios.
An example network deployment is shown, to scale, in
Figure 7. This shows the links present at one,
representative, time as seen by node S0. (This
information is taken, through a proprietary
management interface, from a combination of OLSR’s
Neighbour Set, Topology Set and Routing Table.)
Links are limited by terrain as well as their usual
propagation range, in particular because the antennas
are close to the ground.

M1

S1

S0

C0
S2

S3S4

GW1

Figure 7: Example Network Deployment

The network was not static however; this may be seen
from Table 1 below which shows the mean distance, in
hops, of each other node from node S0. The non-
integer hop count values show a changing topology.
One reason for this is vehicles (including substantial
sized military vehicles) moving so as they may block
direct paths at various times, but may also include
other reasons. This illustrates a need for a protocol
which not only configures an ad hoc arrangement of
nodes but also maintains a dynamic ad hoc network.

Page 4

© BAE SYSTEMS 2004. All rights reserved.

Node Abbreviation Distance from S0

Sensor 1 S1 1.74

Sensor 2 S2 1.07

Sensor 3 S3 1.01

Sensor 4 S4 2.75

Controller 0 C0 1.01

Gateway 1 GW1 1.54

Monitor 1 M1 1.02

Table 1: Mean Distances (Number of Hops) from S0

This network successfully maintained connectivity
throughout most of the demonstration, as shown in
Figure 8 below. There were some problems initially,
and a few later dropouts, but throughout most of the
trial the network passed all data packets successfully.

0

0.2

0.4

0.6

0.8

1

1.2

00:00:00 01:12:00 02:24:00 03:36:00

Figure 8: Packet Receptions at S0

Additional work using OLSR, and at least one other
ad hoc routing protocol, is ongoing under the
collaborative B2NCW (Building Blocks for Network
Centric Warfare) programme (see Acknowledgements)
which will include autonomous vehicle nodes as well
as stationary nodes.

9. Additional Protocol Requirements
OLSR based ad hoc networks may be appropriate for
many small scale military and other applications,
including, but not limited to, sensor networks.
However in considering the requirements for such
networks, some additional points may be noted.

First there is one almost universal requirement,
although the specifics of the requirement vary from
application to application.

• Security.

The following requirements are less universal,
although all of interest in at least some applications.
Note that these requirements are not independent; the
first two are related (and the second to security) as are
the last two.

• Low power operation (including power control).

• Covertness (in some cases possibly requiring a
reactive protocol).

• Multicast.

• Addressing issues (including IPv6 issues).

• External gateway issues (including aggregation and
dynamism).

10. Conclusions
The following key points have been reported in this
paper

• The use of a framework facilitates the use of
multiple ad hoc routing protocols, and also the
portability and extension of even a single protocol.

• BAE SYSTEMS has used this approach to create a
comprehensive implementation of OLSR for both
simulation purposes and real product application.

• Simulation results have shown the benefits of an
extension to include minimum message intervals in
a highly mobile scenario.

• The implementation has been used in successful
field trials of an ad hoc sensor network which is
stationary, but not static, and hence benefits from
full mobile ad hoc network functionality.

• Some observations as to additional requirements for
ad hoc networks have been made. The most
important of these, based on information available
to the author, is security.

Acknowledgements
The author gratefully acknowledges the support of his
colleagues in BAE SYSTEMS Advanced Technology
Centre (especially Mike Otter and Andrew McCabe),
BAE SYSTEMS Avionics Group Sensor Systems
Division (especially George Matich) and Ericsson
Microwave Systems AB and Ericsson Telebit A/S, and
the support from the UK, Swedish and Danish MoDs
under the EUCLID/Eurofinder programme, Project
RTP6.22 (B2NCW).

References
[1] T. Clausen and P. Jacquet (Ed.), “Optimized Link

State Routing Protocol (OLSR)”, RFC 3626,
October 2003.

[2] OPNET Technologies, http://www.opnet.com.

[3] C. Perkins et. al., “Ad hoc On-demand Distance
Vector (AODV) Routing”, RFC 3561, July 2003.

[4] R. Ogier et. al., “Topology Dissemination Based
on Reverse-Path Forwarding (TBRPF)”, RFC
3684, February 2004.

[5] D.B. Johnson et. al., “The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks
(DSR)”, draft-ietf-manet-dsr-09.txt, April 2003.

[6] C. Adjih et. al., “Securing the OLSR protocol”,
2nd Mediterranean Workshop on Ad Hoc
Networks, June 2003.

[7] A. Alexandrescu, “Modern C++ Design: Generic
Programming and Design Patterns Applied”,
Addison Wesley, 2001.

[8] A. McCabe et. al., “Scalability Modelling of Ad
Hoc Routing Protocols – A Comparison of OLSR
and DSR”, 4th Scandinavian Workshop on Ad
Hoc Networks, Stockholm, May 2004.

