Qolyester: a Modular OLSR Implementation
in C++

Ignacy Gawedzkiand Khaldoun Al Agha'
*LRI Laboratory, University of Paris XI, 91405 Orsay, France
TINRIA Laboratory, Rocquencourt, 78153 Le Chesnay, France

Abstract— Thanks to OLSR, proactive routing for mobile ad Il. MOTIVATIONS

hoc networks (MANets) is shown feasible and viable. Never- The need for a workina implementation of the OLSR
theless, there are many directions to explore like QoS routig, 9 P

address autoconfiguration, etc. Therefore, a modular implmen- pr(_)tocol was triggered by the SAFARI proj@pl\l\{hich re-
tation is essential to ease code evolution and feature integion. A quired IPv6 support and the HNA feature, which existing
modular implementation of OLSR is presented, which is initally  implementations lacked.

aimed at being an experimental platform for OLSR extensions  |n addition, the implementation was to be later augmented

worked on at the LRI. This implementation is written in the C++ iy several features worked on at various French labdestor

language, which allows the use of static genericity paradigs and . . - . . .

does not exhibit drastic performance drawbacks. involved in SAFARI (viz node autoconfiguration, multicast
routing, QoS routing, security, etc). This suggested a rawdu

approach to software engineering that would make mainte-

nance and evolution easy.

OLSR stands forOptimized Link-State Routingnd is a Lastly, because the implementation was aimed at practical

proactive routing algorithm for wireless ad hoc network?,pplications and not only model validation and simulatios,
which means that the protocol populates the routing tabl@’énl:e?hto have g?oq E[)erforrgances. h Cit d
of each node thanks to the exchange of control messages wit I estet_conshrglns mad¢ us choose | as a goo
other nodes. The link-state type of the protocol implies tE'PIementation choice regarding programming fanguages.

diffusion of local topology information in the network tolpe Widely used

other nodes reconstructing the global topology on which theFirst of all, almost like its ancestor C, C++ is widely used
routing table entries are _calculated. ~and compilers benefit from the experience acquired during
The strength of OLSR is the way control message diffusigrears of evolution of C compilers which are capable of pro-

is performed: each node selects a subset of its direct neigiircing efficient binary code for a large variety of architges.
borhood as its multi-point relays (MPRs) which are the onlé .
ode security

neighbors allowed to retransmit control messages. The Lise ™0

MPRs has been shown to limit the control overhead and makel "€ typing system of C++ allow programmers to write
OLSR scalable [1]. strict-typed programs if the code respects some fundarenta

a node acquires knowledé%les' This adds_for code security as more errors can be
detected at compilation time.

I. INTRODUCTION

To select its MPRs properly,
about its 2-hop neighborhood by exchanging HELLO me
sages with its direct neighbors. Each HELLO message cantalffficient containers
a list of direct neighbors heard so far and permits the detect The Standard Template Library [2], provides generic build-
of symmetric links. The MPRs are then selected usinggq plocks for programming with containers. C++ templates
hegnstlc that aims to select the smallest subse'_c of 1-hglke STL constructs easy to use and yet fully optimizable
neighbors that together can reach all the 2-hop neighbors. ,y the compiler. This allows easy choice of the best internal

Another very interesting purpose of the MPRs is that theytrycture of containers (lists, vectors, trees, hash salgt)

are the only ones that generate topology messages diffusg@l easy switch from one to another.
to the whole network, which further reduces the amount

control overhead. _ _ .
OLSR does not perform data packet forwarding directly, but C*+ template evaluation mechanisms turn out to provide a

instead manages the routing table of the node so forward®fond level of programming language to C++, calieeta-

is performed as usual by the IP stack. programming that is evaluated at compile time. The field of

Initial motivations are presented in Section Il. The gehergwta—programming techniques in C++ is subject to extensive

architecture of the project is described in Section Il angfudies [3], [4] and there are a variety of applications of

additional features in Section IV. We then present sontgese techniques in situations where performance is tha mai
aspects related to free software packaging in Section v afef'cemn-
finally conclude in Sectio@l. Thtt p://wwv. t el ecom gouv. fr/rnrt/projets/res_02_04. htm

f
%tatic genericity


http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm
http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm

1. GENERAL ARCHITECTURE 2) Message generationTo make information contained
in messages as fresh as possible, the payload of locally

A. The scheduler generated messages is not actually constructed until rine ti

Internally, Qolyester is event-driven, which implies the usef transmission. A message does not necessarily contain its
of a scheduler. Timed events are triggered at some well chogayload data during its whole lifetime. Data payload iseast
date, whereas 1/0 events allow to process data when sogemerated at the time a packet is built, directly into thekptis
input is available. data buffer. This not only guarantees that the informat®n i

Timed events are further divided into two kinds: periodicecent, but also avoids unnecessary buffer copying.
and “once” events. As their names suggest, the former is toln the case of message forwarding, the payload may not
be triggered periodically whereas the latter is to be tigde be modified by the process and thus a message waiting to be
only once. Timed events support the use of a random jitter fiarwarded contains its data payload and buffer copying into
be added to the dates of next iteration, as is suggested in paekets is unavoidable.

OLSR specification [5]. To allow as much messages to go into

An 1/O event basically needs a set of open file descriptogssingle packet and still without delay- enting
and flags indicating which operation is to be performed dng message transmission, a queue of e %
each file descriptor (read and/or write). pending messages is used (Figure 2). In

Each event is created with an association to a handler whigach iteration of the scheduler loop, the —
is to be executed when the event is triggered. Handlers cofiate of the queue is checked and packets
in various forms, for each type of event and each type 8fe constructed with pending messages
handling that is to be performed. New handlers can be eas#yd scheduled for transmission. The fact
added for new purposes. that data of locally generated messagesf=— |

The scheduling itself is rather simple: file descriptor ingjl 1S actually built at the time of packet
and timed event processing are performed in a loop and céRastruction allows partial messages to,, ,

Creation

Message gen-

routines are called from inside the event handlers be generated in the case there is NQfation
enough room to put all the information
B. The Core at once.

) 3) Set handling:According to the RFC, at least the follow-
The core is the more abstract part that performs set apf sets must be maintained:

message handling. Reception of messages may change the
state of the sets which in turn may imply the transmission

of messages « Link set « MPR Selector set
ges. . . « 1-hop Neighbor set « Topology set
1) Message receptionPackets received from the network . 2-hop Neighbor set . Duplicate set

are handed to the core by the system interface (Figlre 1)
Packet integrity is then checked and header information is
extracted by the packet parser. Each message is extraded ann addition to that, depending on the optional features
handed to the message parser which checks each messageigded, the following sets are used:

integrity, extracts header information and hands the @aylo , MID set

to each specific message parser (one for each message typg). yNA set

E {PACKET PARSER

Packet

from network :ﬂ
|k

% —
. DEFAULT
| MESSAGE

i, FORWARDER _

+ MPR set

Some sets areorrelated and coherence between entries in
them must be ensured. Other sets have elements which should
change state or even disappear after a given time. Setssare al
used in different ways: all sets support element insertoor,
not all of them support explicit element removal (e.g. elatae
of the Duplicate set are always removed automatically at
element expiration). Some sets must support sorted iberati
(some must even support different sorting criteria at oaoe)
some must support element search.

The most simple form of correlation is when one set can be
seen as aubsetof another. Then instead of keeping separate

Fig. 1. Message reception instances of the entries inside the set and the subset, the se
can be used as the subset as long as a predicate to decide

When the specific message parser returns and if the messapether an entry is in the subset is provided. To encapsulate
type indicates to do so, the message is handed to the spetifis mechanismQolyester uses a new design pattern derived
message forwarder. Since the RFC does not specify any otfrem the iterator: themask iterator. If the result of a search
forwarding algorithm apart the default one, each specifis an entry not belonging to the subset, then the mask iterato
forwarder calls the default forwarder. points to the end of the set to indicate that the element was

" SPECIFIC
MESSAGE
PARSER

MESSAGE
PARSER

SPECIFIC
MESSAGE
FORWARDER




not found. If the subset is large compared to the set, in othetwork interface information retrieval and setting anditirag
words if many of the set’'s elements are also in the substtble management.
then iteration over the subset using the mask iterator is notAll these operations are abstracted in the core and are
absurd: when the mask iterator is incremented to point implemented in a separate part that aims to be as independent
the next element, it skips all elements not belonging to tlué the core as possible. The idea is to enable easy porting
subset. A concrete example Qolyester is the Symmetric 1- to other operating systems (curren@olyester only runs on
hop Neighbor set which is a subset of the 1-hop Neighbor sktnux) and other improvements (see Secfion V).
the predicate being whether the neighbor is symmetric. The core does not use network sockets directly, but an
More complicated forms of correlation require the use of @bstract form of network interface instead. An interfacessd
proxy object which encapsulates the collection of correlatead send and receive packets and potentially for other nétwor
sets. This ensures that the elements of the correlateda®ts celated operations. This enables, for instance, the usevefal
not be modified outside the proxy and the coherence betwesmtkets instead of only one if so needed
the sets cannot be broke@olyester uses this mechanism for The abstract interface is also used when constructing pack-
coherence maintenance between the Link set and the 1-tg Indeed, the packet size must not exceed the interface’s
Neighbor set. MTUS3, which has to be retrieved along other interface infor-
For sets which elements get modified implicitly (eithemations (network address, prefix length, name, etc).
changed or destroyed), a more elaborate solution is used. ARouting table management is abstracted at the core level
reference to elements of such sets are kept Deketableset as well. Qolyester maintains its own version of the routing
along with the date of expiration at which an action has to kables internally, to allow optimized kernel routing talbhan-
performed on the element. A special timed event is triggatedagement. Indeed, only changes of the internal table have to b
the next date of expiration to call the handler that perfottmes applied to the kernel table, instead of the table being fldshe
requested action. Depending on whether the expirationi@mpland populated again at each table change.
some further action on the sets and message generation, a
deletable element may request an exact timed action (tegge
at the most exact date as possible) or not (i.e. Duplicate séd- Address families
elements do not require exact removal and can be removedhe most obvious feature @olyester that is not required
roughly after their expiration date is passed). by the RFC is that all the core is totally independent of the
If a set needs to support sorted iteration, the set is simply address family (either IPv4 or IPv6). An address is used
implemented as a STeet which guarantees that most operas an abstract element that supports a range of operatiains th
ations are never worse than logarithmic and that its elesneate common to any family (create, destroy, resolve, convert
are maintained in sorted order. If a set needs to be iteratedstring, etc). Nevertheless, to enable an optimal use @f th
on in another sorted order, andex is used, i.e. aset of addresses, the choice between IPv4 and IPv6 is static (i.e.
iterators to elements of the set. This avoids having to serade at compile time) to let the compiler inline most of the
the set before iteration and the use of iterators allows &pkeoperations. Since the use of a mixed IPv4-1Pv6 ad hoc network
only one instance of each element. Of course, a set and alliiakes no sense, there is no need to keep this modularity at
indexes have to be maintained in parallel to keep coherenge time.
and so they are encapsulated in a more general class.
4) Some details:Some messages’ purpose is to adverti&® ToPology graph
the contents of some sets. Since the message payload size cdine RFC specifies a way to calculate the routing table based
be too small to contain at once all the information to adserti directly on the information contained in the Topology set.
a form of partial messages has been specified. So only a péfhile this method gives routes analogous to shortest péths,
of the set’s contents can be used to build a message, provigesirains the modularitf)olyester maintains a topology graph
that all the set’s elements are advertised once in a giveagher along the Topology set and calculates routes on the grapl usi
To properly advertise all elements equally, a timestamsif | the Dijkstra algorithm. Moreover, the topology graph is not
advertisement is used. The message construction theteitergust another representation of the Topology set since ilsis a
on the set using the index of elements sorted in increasiatiected by the 2-hop Neighbor set (a route may then exist to
timestamp order. This provides an elegant way to prioritize 2-hop Neighbor set even if there are temporarily no MPR
elements which have been waiting longer for advertisententto reach it).
offers also a way to detect that a additional message hawe to bAnother purpose of the topology graph is the use of QoS
constructed immediately otherwise the minimal advertisetm metrics on links for QoS routingQolyester is aimed at
period of some elements would not be respected. providing an experimental platform for implementing QoS
routing techniques, so the path calculation method may not

IV. ADDITIONAL FEATURES

C. The system interface

The interaction with the operating system is rather simpl 2|t has occurred that using multicast in IPv6 for packet boaat requires
%‘e use of one socket for transmission and one for recepticallow fine

The operations that the system performs on behalf of tB&ce address control.
core is essentially packet reception and transmission/doel 3Maximum Transfer Unit: maximum size of a data packet on thevork.



necessarily always be a shortest path algorithm. In additio Another purpose of Autoconf is to let maintainers add global
that, the topology graph could be used to keep all the pattatic options easily. The choice of IP address family for
towards destinations in memory, instead of the next hopealoimstance is made by calling theonf i gur e script with the
[6]. - - enabl e-i pv4 option or not.

C. Virtual interfaces B. Doxygen

Since the network interface is abstracted in the core, con-Doxygen is a tool for documentation generation based on
crete implementations can be switched in the system imterfspecially formatted comments in the source code. It geegrat
in order to provide various features without having to mypdifeither HTML code or ATEX source for hypertext and printed
the core. Pretty early in the development @blyester, it manuals. For the time being, only a fraction Qolyester
appeared that it would be very convenient to be able to r§aurces are commented for Doxygen, however the lack of
several instances of the daemon on a single computerc@nments does not prevent Doxygen from generating basic
make debugging practical. Moreover, some bugs appear oflgcumentation which could nevertheless be useful for amyon
in specific network topologies, which are rather difficult tavanting to dive into the internals.
create using actual separate computers (laptops or PDAIS) Wi g b\ arsion
WLAN cards. All this led to the idea ofirtual interfaces. S

The general idea is that instead of running the daemonsSubversion is a Source Code Management (SCM) soft-
on separate machines and communicating through the ra@® [9] amed at replacing CVS that, in spite of
medium, daemons are run on the same computer and cdff- POPularity, lacks a few crucial features. Quite re-
municate with aswitch process which purpose is to emulat&€ntly, we have put up a public subversion repository
the network topology. A virtual network interface is thersju &t SVn://subversion.lri.fr/qolyester to allow
another implementation of the plain interfaces, suppgréii €3Sy collaboration between partners of the SAFARI project
needed operations at higher level, but using communi(xatid'?'f‘d enable anyone to check out a fresh development version.

with the switch instead of actual reception and transmissio VI. CONCLUSION

on the radio interface. . .
. . . . . olyester has now reached a state of maturity that makes it
The actual implementation of the switch process is static Qoly y

. . . . le in real worl lications. It implements all theui
i.e. the network topology is provided as dot file at process usable in real world applications. It implements all theuieed

startup, but it could be rendered dynamic by implementi and optional features described in the RFC. Anyone is free to

n . ) . L
some mobility model and making the topology change Ovéﬂrs);vrilload tfromht tp://qol sr.lri. fr, compile it and

time.
If the actual number ofQolyester instances is so largeFuture work

that a single machine could not provide sufficient proc&ssin aqgitional features are to be integrated shortly. Our pagn
power, the topology of the virtual network could be disttéml j the SAFARI project are working on address autoconfigu-
over several switch instances running on several maching§on, multicast routing and security enhancement. We als
and communicating through a network. The use of a separﬁtgn to implement QoS routing using bandwidth and delay
switch process is actually the most modular solution. metrics as soon as possible. In the QOLSR working group,
we are also studying multipath routing as a way to enhance

) o reliability, increase bandwidth and decrease blocking.rat
Qolyester is free software, distributed under the GNU

V. FREE SOFTWARE PACKAGE

General Public License [7]. Snapshots of the source package REFERENCES

are available ahttp://qol sr.lri.fr/code. [1] T. Clausen and P. Jacquet, “Optimized Link State RouBngtocol,”"RFC
3626 October 2003.

A. Autotools [2] “Standard template library programmer’s guide,”

- . . http://www.sgi.com/tech/stl/.
To ease the building of the sources and using of stafif workshop @ on  C++  Template  Programming 2000,

package optionsQolyester makes use of Autoconf and Au- _ http:/iwww.oonumerics.org/tmpwO0/.

; : Second Workshop on C++ Template Programming2001,
tomake [8]. The purpose of Automake is to make makefilé hitp://www. 0onumerics. org/tmpwO1/.

management as simple as possible, even for large projggfsr. Clausen and P. Jacquet, “Optimized link state rou@4.SR) proto-
with deep source hierarchies. Another advantage of using col” hOtIFp://Wévw.iectjf.okrg/rfcollrfc36|26-t;<1t, RISCS3626_1 mberdZd?O& .
: : H. Badis, I. Gawedzki, and K. Al Agha, “QoS routing in addinetworks
AUtoma_ke is that generated _makeflles support common tardg Susing QOLSR with no need of explicit reservation,” V. F. '®&. |EEE,
such as nstal I, cl ean, di st, etc, to allow easy source  2004.
code and package management. [7] “The GNU General Public License,”
Autoconf is used to generate a portable shell script named ggﬁg"’l";"g"{'g”“'orglc‘)py'emgp"mm" Free  Software  URaation,
confi gure that checks for the system’s peculiarities an@] G. v. vaughan, B. Elliston, T. Tromey, and I. L. Tayl&&NU Autoconf,
enables the use of workaround code in the sources if possible AUtOfTI_ake and Libtool Pearson BQOIES, October 2(%00- _ |
The script is called by the user to generate all the filé@ B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilatrsion Contro

Y . with Subversion O’Reilly Media, 2004.
needed for correct compilatiolMékef i | es among others).


http://qolsr.lri.fr/code
http://qolsr.lri.fr/code
svn://subversion.lri.fr/qolyester
http://qolsr.lri.fr
http://qolsr.lri.fr/code
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.oonumerics.org/tmpw00/
http://www.oonumerics.org/tmpw00/
http://www.oonumerics.org/tmpw01/
http://www.oonumerics.org/tmpw01/
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

	Introduction
	Motivations
	General architecture
	The scheduler
	The Core
	Message reception
	Message generation
	Set handling
	Some details

	The system interface

	Additional features
	Address families
	Topology graph
	Virtual interfaces

	Free software package
	Autotools
	Doxygen
	Subversion

	Conclusion
	References

