
Qolyester: a Modular OLSR Implementation
in C++

Ignacy Gawędzki∗ and Khaldoun Al Agha∗†

∗LRI Laboratory, University of Paris XI, 91405 Orsay, France
†INRIA Laboratory, Rocquencourt, 78153 Le Chesnay, France

Abstract— Thanks to OLSR, proactive routing for mobile ad
hoc networks (MANets) is shown feasible and viable. Never-
theless, there are many directions to explore like QoS routing,
address autoconfiguration, etc. Therefore, a modular implemen-
tation is essential to ease code evolution and feature integration. A
modular implementation of OLSR is presented, which is initially
aimed at being an experimental platform for OLSR extensions
worked on at the LRI. This implementation is written in the C++
language, which allows the use of static genericity paradigms and
does not exhibit drastic performance drawbacks.

I. I NTRODUCTION

OLSR stands forOptimized Link-State Routingand is a
proactive routing algorithm for wireless ad hoc networks,
which means that the protocol populates the routing tables
of each node thanks to the exchange of control messages with
other nodes. The link-state type of the protocol implies the
diffusion of local topology information in the network to help
other nodes reconstructing the global topology on which the
routing table entries are calculated.

The strength of OLSR is the way control message diffusion
is performed: each node selects a subset of its direct neigh-
borhood as its multi-point relays (MPRs) which are the only
neighbors allowed to retransmit control messages. The use of
MPRs has been shown to limit the control overhead and make
OLSR scalable [1].

To select its MPRs properly, a node acquires knowledge
about its 2-hop neighborhood by exchanging HELLO mes-
sages with its direct neighbors. Each HELLO message contains
a list of direct neighbors heard so far and permits the detection
of symmetric links. The MPRs are then selected using a
heuristic that aims to select the smallest subset of 1-hop
neighbors that together can reach all the 2-hop neighbors.

Another very interesting purpose of the MPRs is that they
are the only ones that generate topology messages diffused
to the whole network, which further reduces the amount of
control overhead.

OLSR does not perform data packet forwarding directly, but
instead manages the routing table of the node so forwarding
is performed as usual by the IP stack.

Initial motivations are presented in Section II. The general
architecture of the project is described in Section III and
additional features in Section IV. We then present some
aspects related to free software packaging in Section V and
finally conclude in Section VI.

II. M OTIVATIONS

The need for a working implementation of the OLSR
protocol was triggered by the SAFARI project1, which re-
quired IPv6 support and the HNA feature, which existing
implementations lacked.

In addition, the implementation was to be later augmented
with several features worked on at various French laboratories
involved in SAFARI (viz node autoconfiguration, multicast
routing, QoS routing, security, etc). This suggested a modular
approach to software engineering that would make mainte-
nance and evolution easy.

Lastly, because the implementation was aimed at practical
applications and not only model validation and simulation,we
wanted to have good performances.

All these constraints made us choose C++ as a good
implementation choice regarding programming languages.

Widely used

First of all, almost like its ancestor C, C++ is widely used
and compilers benefit from the experience acquired during
years of evolution of C compilers which are capable of pro-
ducing efficient binary code for a large variety of architectures.

Code security

The typing system of C++ allow programmers to write
strict-typed programs if the code respects some fundamental
rules. This adds for code security as more errors can be
detected at compilation time.

Efficient containers

The Standard Template Library [2], provides generic build-
ing blocks for programming with containers. C++ templates
make STL constructs easy to use and yet fully optimizable
by the compiler. This allows easy choice of the best internal
structure of containers (lists, vectors, trees, hash tables, etc)
and easy switch from one to another.

Static genericity

C++ template evaluation mechanisms turn out to provide a
second level of programming language to C++, calledmeta-
programming that is evaluated at compile time. The field of
meta-programming techniques in C++ is subject to extensive
studies [3], [4] and there are a variety of applications of
these techniques in situations where performance is the main
concern.

1http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm

http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm
http://www.telecom.gouv.fr/rnrt/projets/res_02_04.htm


III. G ENERAL ARCHITECTURE

A. The scheduler

Internally,Qolyester is event-driven, which implies the use
of a scheduler. Timed events are triggered at some well chosen
date, whereas I/O events allow to process data when some
input is available.

Timed events are further divided into two kinds: periodic
and “once” events. As their names suggest, the former is to
be triggered periodically whereas the latter is to be triggered
only once. Timed events support the use of a random jitter to
be added to the dates of next iteration, as is suggested in the
OLSR specification [5].

An I/O event basically needs a set of open file descriptors
and flags indicating which operation is to be performed on
each file descriptor (read and/or write).

Each event is created with an association to a handler which
is to be executed when the event is triggered. Handlers come
in various forms, for each type of event and each type of
handling that is to be performed. New handlers can be easily
added for new purposes.

The scheduling itself is rather simple: file descriptor polling
and timed event processing are performed in a loop and core
routines are called from inside the event handlers

B. The Core

The core is the more abstract part that performs set and
message handling. Reception of messages may change the
state of the sets which in turn may imply the transmission
of messages.

1) Message reception:Packets received from the network
are handed to the core by the system interface (Figure 1).
Packet integrity is then checked and header information is
extracted by the packet parser. Each message is extracted and
handed to the message parser which checks each message’s
integrity, extracts header information and hands the payload
to each specific message parser (one for each message type).

PACKET PARSER MESSAGE

MESSAGE
DEFAULT

MESSAGE

MESSAGE
SPECIFIC

SPECIFIC

PARSER

FORWARDER FORWARDER

PARSER
Packet

Pending
message list

from network

Fig. 1. Message reception

When the specific message parser returns and if the message
type indicates to do so, the message is handed to the specific
message forwarder. Since the RFC does not specify any other
forwarding algorithm apart the default one, each specific
forwarder calls the default forwarder.

2) Message generation:To make information contained
in messages as fresh as possible, the payload of locally
generated messages is not actually constructed until the time
of transmission. A message does not necessarily contain its
payload data during its whole lifetime. Data payload is instead
generated at the time a packet is built, directly into the packet’s
data buffer. This not only guarantees that the information is
recent, but also avoids unnecessary buffer copying.

In the case of message forwarding, the payload may not
be modified by the process and thus a message waiting to be
forwarded contains its data payload and buffer copying into
packets is unavoidable.

Pending

Copy

Copy

Creation

message list

Fig. 2. Message gen-
eration

To allow as much messages to go into
a single packet and still without delay-
ing message transmission, a queue of
pending messages is used (Figure 2). In
each iteration of the scheduler loop, the
state of the queue is checked and packets
are constructed with pending messages
and scheduled for transmission. The fact
that data of locally generated messages
is actually built at the time of packet
construction allows partial messages to
be generated in the case there is not
enough room to put all the information
at once.

3) Set handling:According to the RFC, at least the follow-
ing sets must be maintained:

• Link set
• 1-hop Neighbor set
• 2-hop Neighbor set
• MPR set

• MPR Selector set
• Topology set
• Duplicate set

In addition to that, depending on the optional features
included, the following sets are used:

• MID set
• HNA set
Some sets arecorrelated and coherence between entries in

them must be ensured. Other sets have elements which should
change state or even disappear after a given time. Sets are also
used in different ways: all sets support element insertion,but
not all of them support explicit element removal (e.g. elements
of the Duplicate set are always removed automatically at
element expiration). Some sets must support sorted iteration
(some must even support different sorting criteria at once)and
some must support element search.

The most simple form of correlation is when one set can be
seen as asubsetof another. Then instead of keeping separate
instances of the entries inside the set and the subset, the set
can be used as the subset as long as a predicate to decide
whether an entry is in the subset is provided. To encapsulate
this mechanism,Qolyester uses a new design pattern derived
from the iterator: themask iterator. If the result of a search
is an entry not belonging to the subset, then the mask iterator
points to the end of the set to indicate that the element was



not found. If the subset is large compared to the set, in other
words if many of the set’s elements are also in the subset,
then iteration over the subset using the mask iterator is not
absurd: when the mask iterator is incremented to point to
the next element, it skips all elements not belonging to the
subset. A concrete example inQolyester is the Symmetric 1-
hop Neighbor set which is a subset of the 1-hop Neighbor set,
the predicate being whether the neighbor is symmetric.

More complicated forms of correlation require the use of a
proxy object which encapsulates the collection of correlated
sets. This ensures that the elements of the correlated sets can-
not be modified outside the proxy and the coherence between
the sets cannot be broken.Qolyester uses this mechanism for
coherence maintenance between the Link set and the 1-hop
Neighbor set.

For sets which elements get modified implicitly (either
changed or destroyed), a more elaborate solution is used. A
reference to elements of such sets are kept in aDeletableset
along with the date of expiration at which an action has to be
performed on the element. A special timed event is triggeredat
the next date of expiration to call the handler that performsthe
requested action. Depending on whether the expiration implies
some further action on the sets and message generation, a
deletable element may request an exact timed action (triggered
at the most exact date as possible) or not (i.e. Duplicate set’s
elements do not require exact removal and can be removed
roughly after their expiration date is passed).

If a set needs to support sorted iteration, the set is simply
implemented as a STLset which guarantees that most oper-
ations are never worse than logarithmic and that its elements
are maintained in sorted order. If a set needs to be iterated
on in another sorted order, anindex is used, i.e. aset of
iterators to elements of the set. This avoids having to sort
the set before iteration and the use of iterators allows to keep
only one instance of each element. Of course, a set and all its
indexes have to be maintained in parallel to keep coherence
and so they are encapsulated in a more general class.

4) Some details:Some messages’ purpose is to advertise
the contents of some sets. Since the message payload size can
be too small to contain at once all the information to advertise,
a form of partial messages has been specified. So only a part
of the set’s contents can be used to build a message, provided
that all the set’s elements are advertised once in a given period.
To properly advertise all elements equally, a timestamp of last
advertisement is used. The message construction then iterates
on the set using the index of elements sorted in increasing
timestamp order. This provides an elegant way to prioritize
elements which have been waiting longer for advertisement.It
offers also a way to detect that a additional message have to be
constructed immediately otherwise the minimal advertisement
period of some elements would not be respected.

C. The system interface

The interaction with the operating system is rather simple.
The operations that the system performs on behalf of the
core is essentially packet reception and transmission, low-level

network interface information retrieval and setting and routing
table management.

All these operations are abstracted in the core and are
implemented in a separate part that aims to be as independent
of the core as possible. The idea is to enable easy porting
to other operating systems (currentlyQolyester only runs on
Linux) and other improvements (see Section IV).

The core does not use network sockets directly, but an
abstract form of network interface instead. An interface isused
to send and receive packets and potentially for other network-
related operations. This enables, for instance, the use of several
sockets instead of only one if so needed2.

The abstract interface is also used when constructing pack-
ets. Indeed, the packet size must not exceed the interface’s
MTU3, which has to be retrieved along other interface infor-
mations (network address, prefix length, name, etc).

Routing table management is abstracted at the core level
as well. Qolyester maintains its own version of the routing
tables internally, to allow optimized kernel routing tableman-
agement. Indeed, only changes of the internal table have to be
applied to the kernel table, instead of the table being flushed
and populated again at each table change.

IV. A DDITIONAL FEATURES

A. Address families

The most obvious feature ofQolyester that is not required
by the RFC is that all the core is totally independent of the
IP address family (either IPv4 or IPv6). An address is used
as an abstract element that supports a range of operations that
are common to any family (create, destroy, resolve, convert
to string, etc). Nevertheless, to enable an optimal use of the
addresses, the choice between IPv4 and IPv6 is static (i.e.
made at compile time) to let the compiler inline most of the
operations. Since the use of a mixed IPv4-IPv6 ad hoc network
makes no sense, there is no need to keep this modularity at
run time.

B. Topology graph

The RFC specifies a way to calculate the routing table based
directly on the information contained in the Topology set.
While this method gives routes analogous to shortest paths,it
restrains the modularity.Qolyester maintains a topology graph
along the Topology set and calculates routes on the graph using
the Dijkstra algorithm. Moreover, the topology graph is not
just another representation of the Topology set since it is also
affected by the 2-hop Neighbor set (a route may then exist to
a 2-hop Neighbor set even if there are temporarily no MPR
to reach it).

Another purpose of the topology graph is the use of QoS
metrics on links for QoS routing.Qolyester is aimed at
providing an experimental platform for implementing QoS
routing techniques, so the path calculation method may not

2It has occurred that using multicast in IPv6 for packet broadcast requires
the use of one socket for transmission and one for reception to allow fine
source address control.

3Maximum Transfer Unit: maximum size of a data packet on the network.



necessarily always be a shortest path algorithm. In addition to
that, the topology graph could be used to keep all the paths
towards destinations in memory, instead of the next hop alone
[6].

C. Virtual interfaces

Since the network interface is abstracted in the core, con-
crete implementations can be switched in the system interface
in order to provide various features without having to modify
the core. Pretty early in the development ofQolyester, it
appeared that it would be very convenient to be able to run
several instances of the daemon on a single computer to
make debugging practical. Moreover, some bugs appear only
in specific network topologies, which are rather difficult to
create using actual separate computers (laptops or PDAs) with
WLAN cards. All this led to the idea ofvirtual interfaces.

The general idea is that instead of running the daemons
on separate machines and communicating through the radio
medium, daemons are run on the same computer and com-
municate with aswitch process which purpose is to emulate
the network topology. A virtual network interface is then just
another implementation of the plain interfaces, supporting all
needed operations at higher level, but using communications
with the switch instead of actual reception and transmission
on the radio interface.

The actual implementation of the switch process is static,
i.e. the network topology is provided as a.dot file at process
startup, but it could be rendered dynamic by implementing
some mobility model and making the topology change over
time.

If the actual number ofQolyester instances is so large
that a single machine could not provide sufficient processing
power, the topology of the virtual network could be distributed
over several switch instances running on several machines
and communicating through a network. The use of a separate
switch process is actually the most modular solution.

V. FREE SOFTWARE PACKAGE

Qolyester is free software, distributed under the GNU
General Public License [7]. Snapshots of the source package
are available athttp://qolsr.lri.fr/code.

A. Autotools

To ease the building of the sources and using of static
package options,Qolyester makes use of Autoconf and Au-
tomake [8]. The purpose of Automake is to make makefile
management as simple as possible, even for large projects
with deep source hierarchies. Another advantage of using
Automake is that generated makefiles support common targets
such asinstall, clean, dist, etc, to allow easy source
code and package management.

Autoconf is used to generate a portable shell script named
configure that checks for the system’s peculiarities and
enables the use of workaround code in the sources if possible.
The script is called by the user to generate all the files
needed for correct compilation (Makefiles among others).

Another purpose of Autoconf is to let maintainers add global
static options easily. The choice of IP address family for
instance is made by calling theconfigure script with the
--enable-ipv4 option or not.

B. Doxygen

Doxygen is a tool for documentation generation based on
specially formatted comments in the source code. It generates
either HTML code or LATEX source for hypertext and printed
manuals. For the time being, only a fraction ofQolyester
sources are commented for Doxygen, however the lack of
comments does not prevent Doxygen from generating basic
documentation which could nevertheless be useful for anyone
wanting to dive into the internals.

C. Subversion

Subversion is a Source Code Management (SCM) soft-
ware [9] aimed at replacing CVS that, in spite of
its popularity, lacks a few crucial features. Quite re-
cently, we have put up a public subversion repository
at svn://subversion.lri.fr/qolyester to allow
easy collaboration between partners of the SAFARI project
and enable anyone to check out a fresh development version.

VI. CONCLUSION

Qolyester has now reached a state of maturity that makes it
usable in real world applications. It implements all the required
and optional features described in the RFC. Anyone is free to
download it fromhttp://qolsr.lri.fr, compile it and
use it.

Future work

Additional features are to be integrated shortly. Our partners
in the SAFARI project are working on address autoconfigu-
ration, multicast routing and security enhancement. We also
plan to implement QoS routing using bandwidth and delay
metrics as soon as possible. In the QOLSR working group,
we are also studying multipath routing as a way to enhance
reliability, increase bandwidth and decrease blocking rate.

REFERENCES

[1] T. Clausen and P. Jacquet, “Optimized Link State RoutingProtocol,”RFC
3626, October 2003.

[2] “Standard template library programmer’s guide,”
http://www.sgi.com/tech/stl/.

[3] Workshop on C++ Template Programming, 2000,
http://www.oonumerics.org/tmpw00/.

[4] Second Workshop on C++ Template Programming, 2001,
http://www.oonumerics.org/tmpw01/.

[5] T. Clausen and P. Jacquet, “Optimized link state routing(OLSR) proto-
col,” http://www.ietf.org/rfc/rfc3626.txt, RFC 3626, October 2003.

[6] H. Badis, I. Gawędzki, and K. Al Agha, “QoS routing in ad hoc networks
using QOLSR with no need of explicit reservation,” V. F. ’04,Ed. IEEE,
2004.

[7] “The GNU General Public License,”
http://www.gnu.org/copyleft/gpl.html, Free Software Foundation,
June 1991.

[8] G. V. Vaughan, B. Elliston, T. Tromey, and I. L. Taylor,GNU Autoconf,
Automake and Libtool. Pearson Books, October 2000.

[9] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato,Version Control
with Subversion. O’Reilly Media, 2004.

http://qolsr.lri.fr/code
http://qolsr.lri.fr/code
svn://subversion.lri.fr/qolyester
http://qolsr.lri.fr
http://qolsr.lri.fr/code
http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/
http://www.oonumerics.org/tmpw00/
http://www.oonumerics.org/tmpw00/
http://www.oonumerics.org/tmpw01/
http://www.oonumerics.org/tmpw01/
http://www.ietf.org/rfc/rfc3626.txt
http://www.ietf.org/rfc/rfc3626.txt
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

	Introduction
	Motivations
	General architecture
	The scheduler
	The Core
	Message reception
	Message generation
	Set handling
	Some details

	The system interface

	Additional features
	Address families
	Topology graph
	Virtual interfaces

	Free software package
	Autotools
	Doxygen
	Subversion

	Conclusion
	References

