OLSR Workshop OLSR for IPv6

Ryuji Wakikawa Keio University/WIDE project Antti J. Tuominen Helsinki University of Technology

Why OLSR6

- RFC 3626 Experimental RFC
 - Focus on IPv4
- Ad-hoc network requires many addresses
 - Personal Area Network
 - Vehicles
- Supporting IPv6 is urgent
 - Routing messages are changed to IPv6 address length
 - NDP interaction
 - Address Assignments
 - Global Connectivity

Messages Changes

- Address fields are changed to store IPv6 address space (already stated in RFC3626)
 - Packet format
 - TC message
 - HID message
- Network address fields are changed to store IPv6 prefix address and its length
 - HNA message

Address Assignments

- IPv6 has 3 different scope for IPv6 addresses
 - global scope
 - optional, only nodes who needs global connectivity
 - link-local scope
 - mandate, to all IPv6 nodes
 - site-local scope (deprecated)
- IPv6 allows to assign multiple addresses on an interface
 - ex. link local address x 1, global address x 2
- Which IPv6 address is used for
 - limited Broadcast address

main address

Limited Broadcast Address

- Limited broadcast address on IPv6 is
 - all-node multicast address (ff02::1)
 - All IPv6 nodes joins to ff02::1 the link
 - Link local address can not be used to transmit packets over multi-hop. Routers can not forward packets sent to/from link-local address.
- OLSR simply uses ff02::1 as the limited broadcast address
 - source address: olsr node's link local address
 - destination address: ff02::1

Main address

- main address is used to create routes for a node
- 4 options
 - link-local scope address as a main address
 - global scope address as a main address
 - Any scope address as a main address (ignore scope)
 - manet address

Link-local as main address

- Even when a node-A gets a route (more than one hop away) for a node-B. it can not route packets with the route
 - packets meant for a Link Local scope address can not be routed on intermediate nodes
 - Node D may route NS for NodeA using the route
 - NDP relies on link-local scope
 - NDP is stateful complicated protocol

Global as main address

- All nodes do not have a global address
- Two different global addresses
 - Home Address which is not topologically correct address
 - Global address which is assigned by AR and is topologically correct address
- OLSR node needs to get a global address to exchange routing messages
 - Need route to get a global address from a Gateway

Any scope as main address

same issues when link-local scope is used as a main address

Manet address as main address

- New address block for manet
 - new manet scope
 - new manet address block from global scope (ex. 2001:x:/16)
- Concept of manet address
 - all nodes have a manet address generated by similar approach of LL address
 - The manet address is only valid within manet
 - This address's packet MUST NOT be leaked to the Internet
 - Each node exchanges routing messages using the manet address and creates routes for manet nodes using the manet address.
 - The manet address can be used communication within manet, but it is better to use global scope address if available
 - All manet node multicast address may be defined if necessary

OLSR6 Address Assignment

- Link local address is an interface address of each OLSR node and is used to exchange OLSR messages (src/dst address of IP header)
- Manet address is a main address of each OLSR node
- global address is transmitted by MID messages and is used as communication

Scope	Validity	Protocol	Communicati on
Link Local	on-link	NDP	on-link
Manet address	within MANET	OLSR6	on-link, within manet
Global	Internet	(Global6)	Any

Global Connectivity

- The Use of HNA message or New Defined message to exchange gateway information
- Address generation is similar to Address Autoconfiguration (RFC2462)
 - stateless address assignment

Route Setup towards IGW

- Current implementations behavior when receiving Router Advertisements
 - BSD has default router list. Pick one for default route
 - Linux set all access routers as default routes
- How to configure routes toward IGW is up to manet nodes
 - if a manet node often communicates with a lot of nodes located on the Internet, better to utilize the default route
 - Otherwise, it can configure either host or network routes towards IGW

Conclusion

- many possible issues when manet supporting IPv6
 - Adapting message with IPv6 Address length is not sufficient
- Provide possible messages' formats for OLSR6
- Supporting global6 on OLSR6

