
An OLSR implementation,
experience,

and future design issues

Implementation
• Nrlolsr evolved from OLSR draft version 3

– NRL had previous work which modified INRIAv3 code for research purposes
– This effort was a complete restart and independent code implementation

• Built on top of NRLs protolib library for system portability

• Works with: linux, windows, wince, openzaurus, ns-2, opnet

• Nrlolsr is a research oriented OLSR implementation

• Has non-standard command line options for research purposes

• Nrlolsr is not fully rfc3626 compliant
– Does not support MID messages or dual interfaces
– Does not have standard TC_REDUNDANCY
– Has different message jitter functionality
– Uses a link-local multicast address instead of broadcast by default

History
• March 01: Release for ns-2 OLSR draft v3

• June 01: Updated to draft v4

• April 03: Release for linux, draft v8
Ns was temporarily not supported

• May 03: IPv6 support added

• October 03: Release for windows

• Febuary 04: Release for wince, ns2, and opnet

 Current Design Structure
• Nrlolsr is built upon protolib and does not make any

direct system calls.

• Protolib provides a system independent interface.

• Timers, socket calls, route table management, address
handling are all taken care of though protolib calls.

• Core OLSR code is used for all supported systems.

• Porting Nrlolsr to a new system only requires re-defining
existing protolib function calls.

Research
• Early development of nrlolsr helped test out early

specifications.
• Nrlolsr is used to test out new methods.

– Load balancing (not currently supported)
– Fuzzy-sighted flooding
– Tos routing
– Simplified multicasting

• Nrlolsr was used to collect data for two NRL Milcom
papers.
– J. Dean, J. Macker, “A Study of Link State Flooding

Optimizations
for Scalable Wireless Networks,” MILCOM, Oct, 2003

– J. Macker, J. Dean, W. Chao, “An Implementation and Study of
Simplified Multicast Forwarding in Mobile Ad hoc Networks,”
MILCOM, Nov, 2004 (pending)

Research Options
• -al option will set TC_REDUNDANCY higher than 2. All

nodes source tc messages of all of their neighbors.
• -fuzzy option will set ttl and validity time of outgoing tc

messages based upon a preset equation.
• -slowdown option attempts to slow down the rate of

sending tc messages if local neighborhood is stable
• -spf will perform shortest path first route calculations and

send around spf information set manually (ns) or though
packets from outside sources (custom mac layer). ~Qos
delay

• -minmax will perform maximum smallest value
calculations and send around minmax values set in
same manor as spf. ~Qos throughput.

OLSR observations

• Number of MPRs in a network is not necessarily on the
same scale as the total number of forwarders.

• Smaller hello interval or mac layer sensing generally
improves route connectively.

• Willingness values in the range of 1-6 in most random
networks do not drastically change overall
performance. 0 and 7 can.

• -al option generally helps (-al=TC_REDUNDANCY2+)
• Its important to use active timers for hysteresis and not

rely on sequence numbers.
• Jitter as specified changes interval.

1 2 5 863 04 7 9

MPR vs Forwards example

8 MPRs and at most 4 forwards

Mpr node
Non-mpr node

Link

Willingness example

3 3 3 333 33 3 3

0 7 0 770 77 0 0

2 4 2 442 44 2 2

Willingness values in node

Default

Willingness using 1-6 range

Willingness using 0 and 7

TC_REDUNDANCY example

1 2 5 863 04 7 9

11 12 15 181613 1014 17 19

1 2 5 863 04 7 9

11 12 15 181613 1014 17 19

Broadcast links with TC_REDUNDANCY 0-1

1 2 5 863 04 7 9

11 12 15 181613 1014 17 19

Example network

Broadcast links with TC_REDUNDANCY 2 or –al*

Debugging Examples
• Simulation work solved many debugging issues

– Many complex scenarios were examined
– Packet forwarding code was located in wrong place causing extra forwards.
– Incorrect route calculations in which next connecting link was added no matter

hop count.
– Willingness method broken while using –al option.

• User reported bug issues
– Nrlolsr was forwarding ttl of 1
– Many system specific issues
– To many other to list

• Interop discovered bugs
– Broadcast address configuration does not work correctly in linux
– Parsing dual message packets does not process any but first message
– Previous IPv6 support appears broken in NRLOLSR 7.4 release (will fix in next

release)

Possible Future Improvements

• Hybrid proactive/reactive protocol
• Load balancing/type of service routing

Hybrid OLSR
Current limitations and possible solutions

• No standard way of limiting flooding in terms of area
– Develop 3 or more standard flooding patterns
– Send interval time and flooding pattern instead of validity time

and extrapolate validity time using hop count.
• No event driven link state messages

– Allow event driven link state messages but put a cap on the
amount

– Only send event driven tcs when global routing will be affected
• No reactive route building and suggested approach

– Define when route requests might be sent
– Include path state in route requests
– Have route replies include full link state path to destination
– Allow virtual links of greater than one hop
– Add links to link state database and redo routing table

Load balancing and TOS routing

• OLSR does not presently have a standard
method for extra link cost values to be sent
– Allow for TC+ messages which include fields for link

values and type of value field
– TC+ messages should also include node values
– Route calculation methods should be developed for

different types of service
• Many routing table implementations do not allow

for load balancing or ToS routing

Conclusion
• Interop a success – several lessons learned
• OLSR is mature but room still exists for

improvement
• Nrlolsr provides both simulation and real world

operations
• Nrlolsr is a research oriented implementation
• Nrlolsr is freely available at pf.itd.nrl.navy.mil

