An OLSR implementation,
experience,
and future design issues



Implementation

Nrlolsr evolved from OLSR draft version 3
— NRL had previous work which modified INRIAv3 code for research purposes
— This effort was a complete restart and independent code implementation

Built on top of NRLs protolib library for system portability
Works with: linux, windows, wince, openzaurus, ns-2, opnet
Nrlolsr is a research oriented OLSR implementation

Has non-standard command line options for research purposes

Nrlolsr is not fully rfc3626 compliant
— Does not support MID messages or dual interfaces
— Does not have standard TC_REDUNDANCY
— Has different message jitter functionality
— Uses a link-local multicast address instead of broadcast by default



History

March 01: Release for ns-2 OLSR draft v3
June 01: Updated to draft v4

April 03: Release for linux, draft v8
Ns was temporarily not supported

May 03: IPv6 support added
October 03: Release for windows
Febuary 04: Release for wince, ns2, and opnet



Current Design Structure

Nrlolsr is built upon protolib and does not make any
direct system calls.

Protolib provides a system independent interface.

Timers, socket calls, route table management, address
handling are all taken care of though protolib calls.

Core OLSR code is used for all supported systems.

Porting Nrlolsr to a new system only requires re-defining
existing protolib function calls.



Research

Early development of nrlolsr helped test out early
specifications.

Nrlolsr is used to test out new methods.

— Load balancing (not currently supported)

— Fuzzy-sighted flooding

— Tos routing

— Simplified multicasting

Nrlolsr was used to collect data for two NRL Milcom
papers.

— J. Dean, J. Macker, “A Study of Link State Flooding
Optimizations
for Scalable Wireless Networks,” MILCOM, Oct, 2003

— J. Macker, J. Dean, W. Chao, “An Implementation and Study of

Simplified Multicast Forwarding in Mobile Ad hoc Networks,”
MILCOM, Nov, 2004 (pending)



Research Options

-al option will set TC_REDUNDANCY higher than 2. All
nodes source tc messages of all of their neighbors.

-fuzzy option will set ttl and validity time of outgoing tc
messages based upon a preset equation.

-slowdown option attempts to slow down the rate of
sending tc messages if local neighborhood is stable

-spf will perform shortest path first route calculations and
send around spf information set manually (ns) or though

packets from outside sources (custom mac layer). ~Qos
delay

-minmax will perform maximum smallest value
calculations and send around minmax values set in
same manor as spf. ~Qos throughput.



OLSR observations

Number of MPRs in a network is not necessarily on the
same scale as the total number of forwarders.

Smaller hello interval or mac layer sensing generally
Improves route connectively.

Willingness values in the range of 1-6 in most random
networks do not drastically change overall
performance. 0 and 7 can.

-al option generally helps (-al=TC_REDUNDANCY2+)

Its important to use active timers for hysteresis and not
rely on sequence numbers.

Jitter as specified changes interval.



MPR vs Forwards example

8 MPRs and at most 4 forwards

Q—08—4—6—6—0O—8—9—0
— Link
O Mpr node

(O Non-mpr node



Willingness example

Willingness values in node

Default

Q—C—B—B—C—B—B—RB—C—0

Willingness using 1-6 range

Q—a@—02—1@8—020—a—02—a@—20—®@

Willingness using 0 and 7

QO—@0—0—~@——O0O—0@O—~0—=@—~0—0




TC REDUNDANCY example

Example network

1 @ ©) @ i ® @ ® © 0

Broadcast links with TC_REDUNDANCY 0-1

—20—C@—180—06— 60— 0@ —0B——0—™~0

O—C—C—0B—6G—6—0—6B—0—0

Broadcast links with TC_REDUNDANCY 2 or —al*

D—@—8—38—0—06 —0O— 08 —090—~©0




Debugging Examples

« Simulation work solved many debugging issues
— Many complex scenarios were examined
— Packet forwarding code was located in wrong place causing extra forwards.

— Incorrect route calculations in which next connecting link was added no matter
hop count.
— Willingness method broken while using —al option.

« User reported bug issues
— Nrlolsr was forwarding ttl of 1
— Many system specific issues
— To many other to list

« Interop discovered bugs
— Broadcast address configuration does not work correctly in linux
— Parsing dual message packets does not process any but first message

- Previou)s IPv6 support appears broken in NRLOLSR 7.4 release (will fix in next
release



Possible Future Improvements

* Hybrid proactive/reactive protocol
» Load balancing/type of service routing



Hybrid OLSR

Current limitations and possible solutions

No standard way of limiting flooding in terms of area
— Develop 3 or more standard flooding patterns

— Send interval time and flooding pattern instead of validity time
and extrapolate validity time using hop count.

No event driven link state messages

— Allow event driven link state messages but put a cap on the
amount

— Only send event driven tcs when global routing will be affected
No reactive route building and suggested approach

— Define when route requests might be sent

— Include path state in route requests

— Have route replies include full link state path to destination

— Allow virtual links of greater than one hop

— Add links to link state database and redo routing table



Load balancing and TOS routing

 OLSR does not presently have a standard
method for extra link cost values to be sent

— Allow for TC+ messages which include fields for link
values and type of value field

— TC+ messages should also include node values
— Route calculation methods should be developed for
different types of service

« Many routing table implementations do not allow
for load balancing or ToS routing



Conclusion

Interop a success — several lessons learned

OLSR is mature but room still exists for
Improvement

Nrlolsr provides both simulation and real world
operations

Nrlolsr is a research oriented implementation
Nrlolsr is freely available at pf.itd.nrl.navy.mil



