A Study of Link Buffering for OLSR

Masato Goto, Sota Yoshida, Kenichi Mase, and Thomas Clausen

Graduate School of Science and Technology Niigata University, JAPAN

04/09/30 **Niiga ta** o**Llabhoprisi fy**in Diego

Outlines

- Background
- Introduction of an extension for OLSR
 - Link Buffering
 - Packet Restoration
- Performance evaluation
- Conclusion
- Future work

Background

• The hello-based detection of link disconnection is not enough quick as required and it is difficult to keep accurate link information under high mobility environments.

-----> Degradation of packet delivery ratio

- Link layer notification method is defined as one of the methods to detect link disconnection as fast as possible.
- In high-mobility, high-density and high-loaded ad hoc networks, it is difficult to keep high performance even if only link layer notification is used.
- In order to improve performance in such a environment, we propose an extension of OLSR.

Link Layer Notification

- Link layer notification is described in section 13 of RFC 3626.
- How is link disconnection detected ?
 - When not receiving CTS after sending RTS.
 - When not receiving ACK after sending a data packet.

Extension for OLSR

- The extension includes two mechanisms:
 - Link buffering
 - Packet restoration
- They are used together with link layer notification, that informs detection of link disconnection to upper layers.

Link Buffering (1/5)

When link disconnection is detected by link layer notification, the node conducts two actions.

Action 1: The node changes all routes using the disconnected link to route_invalid state.

Action 2: The node updates the neighbor table and routing table.

7

Destination	Next Hop	State
3	5	invalid
4	10	valid
7	5	invalid

- Normally, a route entry is in the route_valid state.
- When a node is informed of link disconnection, it changes all routes using same next hop to route invalid state.

Destination	Next Hop	State
3	No route	invalid
4	10	valid
7	6	valid

Link Buffer (4/5) Data packet forwarding

When a node receives a data packet, it behaves differently according to the route entry and its status.

- No_route Discards
 - Route_valid Forwards to next hop
 - Route_invalid Stores in the link buffer

04/09/30 N**iiga ta** o**Clashoprisi Sy**an Diego

Link Buffering (5/5)

- Route state transition occurs in following cases:
 - When a node receives control packets.
 - When a node is informed of link disconnection.
- The node forwards all packets destined to a destination in the link buffer if the route's state changes to route_valid.
- If a route for the destination is not updated within BUFFERING_TIME, the node discards all packets destined to the destination in the link buffer and deletes the route entry in the routing table.

Niista ta olishoprisi fan Diego

Packet Restoration

Next hop 34
Next hop 34
Next hop 27
Next hop 6
Next hop 6
Next hop 34
MAC Queue

- The node doesn't drop the packet with same next hop in MAC queue.
- The node repeats wasteful data transmission to disconnected link.

- Simple restorationFull restoration

04/09/30 Niiga ta olisitoprisi fan Diego

Simple Restoration

04/09/30 N**iiga ta** o**Clashoprisi S**an Diego

Full Restoration

04/09/30 **Niiga ta** o**ch Shoprisi S**an Diego

Parameter	Value
Simulation time	900 [sec]
Terrain range	300 × 1500 [m]
Number of nodes	100
Propagation model	Two-ray ground
Power range	100 [m]
Bandwidth	11 Mbps
Mobility model	Random way point, Pause time = 0 [sec]
MAC protocol	IEEE802.11
MAC queue size	50
Traffic type	CBR: 4 packets /sec, 64 [byte]

Table 1: Simulation model and parameters

Parameter	Value
Hello interval	1 [sec]
TC interval	1 [sec]
Holding time of neighbor information	1 [sec]
Holding time of topology information	3 [sec]
Link buffer size	Unlimited
BUFFERIUNG_TIME	3 [sec]

Table 2: Parameters of OLSR and Link buffering

Various version of OLSR

- OLSR-C: OLSR with packet clearance.
- OLSR-SB: OLSR with packet clearance and link buffer.
- OLSR-SR: OLSR with packet clearance, link buffer and simple restoration.
- OLSR-FR: OLSR with packet clearance, link buffer and full restoration.

--- OLSR-SR --- OLSR-LB → OLSR-FR imes OLSR-C

Fig. 1 Packet delivery ratio with 100 nodes and 20~40 m/s.

17

← OLSR-FR --- OLSR-SR → OLSR-LB × OLSR-C

Fig. 2 Packet delivery time with 100 nodes and 20~40 m/s.

→ OLSR-FR --- OLSR-SR → OLSR-LB × OLSR-C

Fig. 3 Packet delivery time with 100 nodes and 30 flows.

Fig. 4 Packet delivery time with 100 nodes and 30 flows.

Conclusion

- We proposed "Link buffering" and "Packet restoration", which are used with link layer notification and evaluated their performance.
- OLSR-LB has little effect when node density is relatively high, since a new route can be instantly recalculated in OLSR when link disconnection is detected.
- OLSR-SR and OLSR-FR significantly outperform OLSR without link buffering and packet restoration.

Future work

- We need to evaluate the performance of OLSR in various environment (low mobility).
- We need to improve the mechanism how to retransmit the packet in link buffer.

