Optimized Multicast

Cho, song yean Samsung Electronics

What we trying to do ?

• Communication Service inside the building

Testbed

- 30 nodes
- 4 gateway
- 802.11b
- Barriers
 - Barrier per 20 m
 - Barrier per 15 m

Services

- Push to Talk (PTT)
- VoIP
- Alarm & Notification
- Messenger

What functions We need?

Requirements for OOM

- Minimizing Overhead
 - Utilizing Information I have already
 - \rightarrow Use Information (MPR, Routing Table) of OLSR
 - Making Multicast Delivery Path only for Real multicast data

 \rightarrow building multicast delivery paths when Multicast Client try to send data

- Maximizing group member reachability
 - Delivering Data to All Group Members
 - \rightarrow building redundant paths

Assume what we have already?

• Info from OLSR

- Which Node is Group?
- Shortest Hop Count to all Group members

• Mechanism to Build Multicast Paths

- Source Tree
- Multicast Mesh
- Stateless

Tree vs. Mesh

- Source Based or Shared Tree
- Multicast Mesh
- Stateless

Source Based	Mesh Based
• Build Multicast Tree	• Build Mesh
 Root: source Leaves : group members 	- Mesh : multiple paths between source and group members
 Combining shortest path from source to all 	 Outperforms tree-based multicasting
group members	when node moves frequently and fast
• Optimal \rightarrow Efficient	• Alternative Path \rightarrow Higher
• Fragile to Mobility	Reachability
Ex) AMRIS MAODV MOLSR	• Less Optimal
	• Ex) ODMPR, CAMP, FGMP

Basic Idea

- On-Demand : (Group Members, Shortest Hop Count) in Packet
- Multiple Paths to Group Members

- Node N is forwarder?

Condition	Effect	
(S) + D(GM) <= Shortest Hop Coun	se All Shortest Paths to Group Member	Mesh
D(S) + D(GM) <= Shortest HopUs && MPRSelector(N) ∈ Sende	se some Shortest Paths connecting MPB to Group Members	Mesh +MPR
(D(S) + D(GM) <= Shortest Hop && MPRSelector(N) ∈ Sender) (D(S) + D(GM) <= Shortest Hop Count && MPRSelector(N) ∈ Sender	se some Shortest Paths connecting MPB to Group Members including paths without MPRs	Mesh +MPR +extra

Simulation Model

• Testbed Model

- Random Unit graph G

- Graph obtained by systematically linking pairs nodes whose distance is smaller or equal to the unit length-r
- N : nodes distributed uniformly on square of size L x L unit lengths (L>0)
- Mobility
 - •100 * (r / R)
 - r :distance to move at a time
 - R:distance to transfer the data

Comparison Mechanism

• MPR flooding with radius

- delivering data through MPRs to all directions until it reaches the furtherest group members
- Mesh
 - delivering data through all shortest paths from source to group media refor static
- Mesh+MPR

topology

- delivering data through some shortest paths connecting MPRs from soupon forgaynamiembers
- Mesh+MPR+extra topology
 - delivering data through some shortest paths connecting MPRs from source to group members and extending the paths to extra hops

SAMSUNG DIGITally everyone's invited

Comparison Result

• Overhead

- Minimizing the Cost to transmit Multicast Data?
- the number of forwarders

• Group Reachability

- Maximizing the Reachability of Group Members
- (group members to receive the packet #/total node#) * 100

Overhead without mobility

Node # = 200

SAMSUNG DIGITall everyone's invited

Group Reachability with mobility

Node #= 200, Group member #= 10

SAMSUNG DIGITall everyone's invited

Overhead with mobility

Node #= 200, Group member #= 10

SAMSUNG DIGITall everyone's invitedm

Implementation Design on Linux

